

A data assimilation-centred convective-scale ensemble for Singapore and its background error statistics

Rachel Koh, Joshua Lee, Pratiman Patel, HPCB

Centre for Climate Research Singapore

2024 Bureau of Meteorology Annual R&D Workshop / 6th Momentum®UK Partnership Convective Scale Workshop

Session: Convective Scale Data Assimilation

11 September 2024

Content

- 1. Weather of Singapore
- 2. Existing forecast systems: SINGV-DA & SINGV-EPS
- 3. Ensemble verification
- 4. Background error statistics

- 1. Weather of Singapore
- 2. Existing forecast systems: SINGV-DA & SINGV-EPS
- 3. Ensemble verification
- 4. Background error statistics

Weather & climate in Singapore

An overview

- Singapore has an equatorial climate
 - Abundant rainfall
 - Moderate and uniform temperatures
 - High humidity
- Weather patterns strongly influenced by monsoon seasons

Southwest Monsoon

- 1. Weather of Singapore
- 2. Existing forecast systems: SINGV-DA & SINGV-EPS
- 3. Ensemble verification
- 4. Background error statistics

Convection-permitting models: SINGV-DA, SINGV-EPS & DACE

	SINGV-DA	SINGV-EPS	DACE
Nature	Deterministic	Ensemble	Ensemble
Resolution	1.5 km	4.5 km	4.5 km
Initial conditions	Fixed cycling DA framework	ECMWF-ENS analyses	SINGV-DA analyses
Boundary conditions	ECMWF-ENS analyses	ECMWF-ENS analyses	ECMWF-ENS analyses
Science configuration	RAL3.2 + #504.4	RAL3.2 + #504.4	RAL3.2 + #504.4

DACE

1. Compute ensemble mean

$$\overline{IC_EC} = \sum_{i=1}^{12} IC_EC_i$$

- 2. Calculate perturbations = deviation of each member i from mean $pert_i = IC_EC_i \overline{IC_EC}$
- 3. Inflate perturbations (x2)

$$pert_i = pert_i * 2$$

To reduce under-dispersiveness

4. Compute initial conditions of each member as a function of forecasts from

SINGV-DA

$$IC_i = IC_DA_0 + pert_i$$

Ensemble centred on best estimate of weather conditions at that time

- 1. Weather of Singapore
- 2. Existing forecast systems: SINGV-DA & SINGV-EPS
- 3. Ensemble verification
- 4. Background error statistics

CRPS – Surface to Upper Atmosphere

Near-surface temperature, RH, u-wind, v-wind: SINGV-EPS significantly outperforms ECMWF, further improved by DACE

> Upper atmosphere: Improvement not significant

- 1. Weather of Singapore
- 2. Existing forecast systems: SINGV-DA & SINGV-EPS
- 3. Ensemble verification
- 4. Background error statistics

Background error statistics estimated using DACE

 6-hour forecasts from DACE used to compute errors-of-the-day as proxies for background error

- Samples are accumulated over hindcast trials to compute raw background error autocorrelations
- Error autocorrelations with respect to various locations in domain, for different variables are shown, to explore:
 - Diurnal variability (effects of time of day)
 - Location-dependence (effects of land, sea, orography)

Variable: 1.5m temperature

- Forecast error over ocean points has negligible correlation with forecast error over land points
- Correlation length-scales for forecast error over oceans are longer than over land

Variable: u-wind

- Forecast error over ocean points has negligible correlation with forecast error over land points
- Correlation length-scales for forecast error over oceans are longer than over land

Variable: v-wind

- Forecast error over ocean points has negligible correlation with forecast error over land points
- Correlation length-scales for forecast error over oceans are longer than over land

Variable: Air pressure at sea level

- Relatively homogeneous forecast errors statistics over ocean and land points
- Longer correlation length-scales observed in 06Z & 12Z cycles

Conclusions

- Existing forecast systems: SINGV-DA & SINGV-EPS
 - Latest Regional Atmosphere-Land science configuration (RAL3.2 + #504.4) has been implemented
- DA-centred ensemble (DACE)
 - Addresses spin-up issues, increases forecast spread
 - Verification using METPlus indicates improved performance
- Ensemble time-dependent background error statistics
 - Time-dependent: Diurnal variation of forecast error statistics in the domain
 - Location-dependent
 - Recommended to explore ensemble-based error statistics for DA in the tropics